DPP - 9 (Electrostatics)

Video Solution on Website:-

Video Solution on YouTube:-
https://physicsaholics.com/home/courseDetails/93
https://youtu.be/Xor7WFTt_YE

Written Solution on Website:-

Q 1. A, B \& C are three concentric metallic shells. Shell A is the inner most and shell C is the outermost. A is given some charge and shell C is earthed-
(a) The inner surfaces of $B \& C$ will have the same charge
(b) The inner surface of $B \& C$ will have same charge density
(c) The outer surface of $A, B \& C$ will have the same charge
(d) The outer surface of C will have no charge density

Q 2. A conducting sphere A of radius a, with charge Q, is placed concentrically inside a conducting shell B of radius b. B is earthed. C is the common centre of A and B

(a) The field at a distancer from C , where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $\frac{\mathrm{KQ}}{\mathrm{r}^{2}}$
(b) The potential at a distance r from C , where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $\frac{K Q}{r}$
(e) The potential difference between A and B is $K Q\left(\frac{1}{a}-\frac{1}{b}\right)$
(d) The potential at a distance r from C, where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $K Q\left(\frac{1}{r}-\frac{1}{b}\right)$

Comprehension (Q3 to Q5)

Two conducting spheres of radius R and $3 R$ carry charges Q and $-2 Q$. Between these spheres a neutral conducting sphere of radius $2 R$ is connected. The separation between the sphere is considerably large. Charge flows through conducting wire due to potential difference.

Q 3. The final charge on initially neutral conducting sphere is:
(a) $-\frac{Q}{6}$
(b) $-\frac{Q}{3}$
(c) $\frac{Q}{3}$
(d) $-\frac{Q}{2}$

Q 4. The decrease in electric potential energy of sphere of radius R is:
(a) $\frac{k Q^{2}}{4 R}$
(b) $\frac{35 k Q^{2}}{72 R}$
(c) $\frac{k Q^{2}}{72 R}$
(d) none

Q 5. The final electric potential of sphere of radius 3 R will be:
(a) $-\frac{k Q}{6 R}$
(b) $-\frac{k Q}{2 R}$
(c) $-\frac{2 k Q}{3 R}$
(d) $-\frac{3 k Q}{R}$

Q 6. A solid conducting sphere of radius 10 cm is enclosed by a thin metallic shell of radius 20 cm . A charge $\mathrm{q}=20 \mu \mathrm{C}$ is given to the inner sphere. Find the heat generated in the process, the inner sphere is connected to the shell by a conducting wire
(a) 12 J
(b) 9 J
(c) 24 J
(d) zero

Q 7. Two concentric shells have radii R and 2 R charges q_{A} and q_{B} and potentials 2 V and (3/2)V respectively. Now shell B is earthed and let charges on them become q_{A}^{\prime} and q_{B}^{\prime}. Then:

(a) $q_{A} / q_{B}=1 / 2$
(b) $q_{A}^{\prime} / q_{B}^{\prime}=1$
(c) potential of A after earthing becomes $(3 / 2) \mathrm{V}$
(d) Potential difference between A and B after earthing becomes $V / 2$

Q 8. Three concentric conducting spherical shells have radii $\mathrm{r}, 2 \mathrm{r}$ and 3 r and charges q_{1}, q_{2} and q_{3} respectively. Innermost and outermost shells are earthed as shown in figure. Select the correct alternative(s)

(a) $q_{1}+q_{3}=-q_{2}$
(b) $q_{1}=-\frac{q_{2}}{4}$
(c) $\frac{q_{3}}{q_{1}}=3$
(d) $\frac{q_{3}}{q_{2}}=-\frac{1}{3}$

Q 9. There are two concentric metal shells of radii r_{1} and $r_{2}\left(>r_{1}\right)$. If the outer shell has a charge q and the inner shell is grounded, the charge on the inner shell is
(a) zero
(b) $-\left(r_{1} / r_{2}\right) \mathrm{q}$
(c) $r_{1} r_{2} q$
(d) infinity

Q 10. $\quad \mathrm{X}$ and Y are large, parallel conducting plates close to each other. Each face has an area $\mathrm{A} . \mathrm{X}$ is given a charge Q . Y is without any charge. Points A, B and C are as shown in the figure.

(a) The field at B is $\frac{Q}{2 \varepsilon_{0} A}$
(b) The field at B is $\frac{Q}{\varepsilon_{0} A}$
(c) The fields at A, B and C are of the same magnitude.
(d) The fields at A and C are of the same magnitude, but in opposite directions.

Q 11. A conducting sphere of radius R, carrying charge Q, lies inside an uncharged conducting shell of radius $2 R$. If they are joined by a metal wire,
(a) $\mathrm{Q} / 3$ amount of charge will flow from the sphere to the shell
(b) $2 \mathrm{Q} / 3$ amount of charge will flow from the sphere to the shell
(c) Q amount of charge will flow from the sphere to the shell
(d) $\mathrm{k} \frac{Q^{2}}{4 R}$ amount of heat will be produced

Q 12. In Given figure all three conductor plates are parallel and identical. Magnitude of charge which will move through switch after closing switch is

(a) Q
(b) $2 Q / 3$
(c) $4 Q / 3$
(d) $Q / 3$

Answer Key

Q. 1 a, d	Q. 2 a, c, d	Q. 3 b	Q. 4 b	Q. 5 a
Q. 6 b	Q. 7 a, d	Q. 8 a, b, c	Q. 9 b	Q. 10 a, c, d
Q. $11 \mathrm{c}, \mathrm{d}$	Q. 12 b			

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP- 9 Electrostatics: Charge Distribution on Parallel Plates ,Sharing of Charge, Earthing By Physicsaholics Team

Q1) A, B \& C are three concentric metallic shells. Shell A is the inner most and shell C is the outermost. A is given some charge and shell C is earthed-
(a) The inner surfaces of B \& C will have the same charge (9 The inner surface of $B \& C$ will have same charge density

(c) The outersurface of A, B \& Ewill have the same charge (d) The outer surface of C will have no charge density

Q2) A conducting sphere A of radius a, with charge Q, is placed concentrically inside a conducting shell B of radius b . B is earthed. Cis the common centre of A and B -

$$
\begin{aligned}
& V_{B}=0 \quad \text { (due to larthing) } \\
& V_{A}=\frac{K Q}{a}-\frac{K Q}{b}=K Q\left(\frac{1}{a}-\frac{1}{b}\right) \\
& V_{H}-V_{B}=K Q
\end{aligned}
$$

(a) The field at a distancerfrom C, where a $(\square) \leq b$, is $\frac{K Q}{r^{2}}$

$$
\begin{aligned}
& F=\frac{K Q}{r^{2}} \\
& =\frac{K Q}{r}-\frac{K Q}{b} \\
& \operatorname{ere}=1 \leq b, \text { is } \frac{K Q}{r^{2}}
\end{aligned}
$$

 (b) The potential ata distance r froma. where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $\frac{K Q}{r}$ (c) The potential difference between A and B is $K Q\left(\frac{1}{a}-\frac{1}{b}\right)$
(d) The potential at a distance r from C , where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $K Q\left(\frac{1}{r}-\frac{1}{b}\right)$

Comprehension: Q3 to Q5

Two conducting spheres of radius R and $3 R$ carry charges Q and $-2 Q$. Between these spheres a neutral conducting sphere of radius 2 R is connected. The separation between the sphere is considerably large. Charge flews through conducting wire due to potential difference.

$$
V=\frac{k q}{R} \Rightarrow q=\frac{y}{k} .
$$

Q3) The final charge on initially neutral conducting sphere is:

$$
\begin{aligned}
& \text { by Conservation of charge } \rightarrow \\
& Q-2 Q=9 V_{1}+9_{2}+V_{3} \\
& Q Q=\frac{6 \times R}{K}
\end{aligned}
$$

(a) $-\frac{Q}{6} \bigcirc$
(c) $\frac{Q}{3}$
(d) $-\frac{Q}{2}$

$$
\begin{aligned}
Q_{2} & =\frac{2 V R}{K}=\frac{2 R}{K}\left(-\frac{K Q}{6 R}\right) \\
& =-Q / 3
\end{aligned}
$$

Q4) The decrease in electric potential energy of sphere of radius R is:

$$
U_{i}=\frac{K Q^{2}}{2 R}
$$

final charge $\Leftrightarrow q, i \rightarrow \frac{V R}{K}=\left(-\frac{k Q}{6 R}\right) \frac{R}{K}=-Q / 6$
(a) $\frac{k Q^{2}}{4 R}$
(b) $\frac{35 k Q^{2}}{72 R}$ (e) $\frac{k Q^{2}}{72 R}$
(d) none

$$
\begin{aligned}
\text { decrease un } P E & =\frac{K Q^{2}}{2 R}-\frac{K Q^{2}}{72 R} \\
& =\frac{K Q^{2}}{R}\left[\frac{36-1}{72}\right]=\frac{35}{72} \frac{K \theta^{2}}{R}
\end{aligned}
$$

Q5) The final electric potential of sphere of radius 3 R will be:

$$
V=-\frac{K Q}{6 R}
$$

Q6) A solid conducting sphere of radius 10 cm is enclosed by a thin metallic shell of radius 20 cm . A charge $\mathrm{q}=20 \mu \mathrm{C}$ is given to the inner sphere. Find the heat generated in the process, the inner sphere is connected to the shell by a conducting wire

(a) 12 J

$$
\begin{aligned}
\text { Heat joraduccid } & =\frac{k q^{2}}{2 R}-\frac{k v^{2}}{4 R}=\frac{k q^{2}}{4 R}=\frac{9 \times 10^{5} \times 4900 \times 1 \sigma^{-2 x}}{4 \times 1} \\
& =g J
\end{aligned}
$$

Q7) Two concentric shells have radii R and 2 R charges q_{A} and q_{B} and potentials 2 V and $(3 / 2) \mathrm{V}$ respectively. Now shell B is earthed and let charges on them become q_{A}^{\prime} and q_{B}^{\prime}. Then:

$$
\begin{aligned}
& V_{B}=\frac{3 V}{2}=\frac{K\left(\sigma_{A}+V_{B}\right)}{2 R} \\
& V_{A}=2 V=\frac{K q_{A}}{R}+\frac{K \sigma_{B}}{2 R} \\
& V_{A}=2 V=\frac{K\left(2 \sigma_{A}+\sigma_{B}\right)}{2 R}
\end{aligned}
$$

(b) $q_{A}^{\prime} / q_{B}^{\prime}=12$

$$
\frac{V_{B}}{V_{A}}=\frac{3}{4}-\frac{q_{A}+Q_{B}}{2 q_{A}+q_{B}} \Rightarrow 6 q_{A}+3 q_{B}=4 q_{A}+4 q_{B}
$$

(c) potential of A after earthing becomes (3/2) V

$$
2 q_{A}=q_{B} \Rightarrow Q_{A / \sigma_{B}}=1 / 2
$$

(d) Potential difference between A and B after earthing becomes $V / 2$

$$
\begin{aligned}
& q_{A}^{\prime}=q_{A} \quad V_{A}^{\prime}=\frac{K q_{A}}{R}-\frac{k V_{A}}{2 R}=\frac{k q_{A}}{2 R} \quad \frac{B V}{2}=\frac{\beta k q_{A}}{2 R} \\
& q_{B}^{\prime}=-q_{A}^{\prime} \\
& V_{A}^{\prime}=\frac{V}{2}
\end{aligned}
$$

Q8) Three concentric conducting spherical shells have radii v, 2 r and 3 r and charges q_{1}, q_{2} and q_{3} respectively. Innermost and outermost shells are earthed as shown in figure. Select the correct alternative (s)

$$
\begin{aligned}
& V_{A}=\frac{K q_{1}}{\gamma}+\frac{k q_{2}}{2 r}+\frac{k q_{3}}{3 r}=0 \\
& 6 w_{1}+3 q_{2}+2 q_{3}=0 \\
& V_{C}=0=\frac{k\left(g_{1}+1 q(1)\right.}{3 \gamma}
\end{aligned}
$$

(e) $\frac{q_{3}}{q_{1}}=3$

$$
5 a^{2}+a_{2}=0
$$

$$
\text { (d) } \frac{q_{3}}{q_{2}}=-\frac{1}{3}
$$

$$
\frac{g_{1}}{q_{2}} \times \frac{q_{3}}{q_{1}}=-\frac{3}{4} \sqrt{q_{1}}=-1 / 4
$$

$$
\begin{aligned}
3 q_{1}-q_{3} & =0 \\
\frac{q_{3}}{q_{1}} & =3
\end{aligned}
$$

Q9) There are two concentric metal shells of radii r_{1} and $r_{2}\left(>r_{1}\right)$. If the outer shell has a charge q and the inner shell is grounded, the charge on the inner shell is

Q10) X and Y are large, parallel conducting plates close to each other. Each face has an area A . X is given a charge Q . Y is without any charge. Points A, B and C are as shown in the figure.
(a) The field at B is ((8) The field at B is $\frac{2 Q^{2}}{\varepsilon_{0} A}$

(c) The fields at A, B and C arebof the same magnitude. (d) Theftields at A and Care of the same magnitude, but in opposite directions.

Q11) A conducting sphere of radius R, carrying charge Q, lies inside an uncharged conducting shell of radius $2 R$. If they are joined by a metal wire,

(a) Q/3 amount of charge will flow from the sphere to the shell
(b) $2 Q / 3$ amount of charge will flow from the sphere to the shell (c) Q amount of charge willflowfrom the sphere to the shell (d) $\mathrm{k} \frac{Q^{2}}{4 R}$ amount of heat will be produced

$$
\begin{array}{rlrl}
V_{l} & =\frac{K Q^{2}}{2 R} & \text { Heat produced } \\
V_{f} & =\frac{K Q^{2}}{4 R} & & =\frac{K Q^{2}}{2 R}-\frac{K Q^{2}}{4 R} \\
& =\frac{K Q^{2}}{4 R}
\end{array}
$$

Q12) In Given figure all three conductor plates are parallel and identical. Magnitude of charge which will move through switch after closing switch is
(a) Q
(c) $4 Q / 3$
(d) $Q / 3$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:-
https://youtu.be/Xor7WFTt_YE

Written Solution on Website:-

Chalo Nikis

